Estimation of the Heat and Water Budgets of the Persian (Arabian) Gulf Using a Regional Climate Model

نویسندگان

  • Elfatih A. B. Eltahir
  • PENGFEI XUE
  • ELFATIH A. B. ELTAHIR
چکیده

Because of the scarcity of observational data, existing estimates of the heat and water budgets of the Persian Gulf are rather uncertain. This uncertainty leaves open the fundamental question ofwhether this water body is a net heat source or a net heat sink to the atmosphere. Previous regional modeling studies either used specified surface fluxes to simulate the hydrodynamics of the Gulf or prescribed SST in simulating the regional atmospheric climate; neither of these two approaches is suitable for addressing the above question or for projecting the future climate in this region. For the first time, a high-resolution, two-way, coupled Gulf–atmosphere regional model (GARM) is developed, forced by solar radiation and constrained by observed lateral boundary conditions, suited for the study of current and future climates of the PersianGulf. Here, this study demonstrates the unique capability of this model in consistently predicting surface heat and water fluxes and lateral heat and water exchanges with theArabian Sea, as well as the variability of water temperature andwatermass. Although these variables are strongly coupled, only SST has been directly and sufficiently observed. The coupled model succeeds in simulating the water and heat budgets of the Persian Gulf without any artificial flux adjustment, as demonstrated in the close agreement of model simulation with satellite and in situ observations. The coupled regional climate model simulates a net surface heat flux of 13Wm, suggesting a small net heat flux from the atmosphere into the Persian Gulf. The annual evaporation from the Persian Gulf is 1.84m yr, and the annual influx and outflux of water through the Strait of Hormuz between the PersianGulf and Arabian Sea are equivalent to Persian Gulf–averaged precipitation and evaporation rates of 33.7 and 32.1m yr, with a net influx of water equivalent to a Persian Gulf–averaged precipitation rate of 1.6m yr. The average depth of the Persian Gulf water is;38m. Hence, it suggests that the mean residency time scale for the entire Persian Gulf is ;14 months.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of salinity, heat and buoyancy budgets of the inflow coastal current into the Persian Gulf from the Strait of Hormuz

An analytical model for a coastal boundary current was used to investigate heat and salt budget of exchange flows in the Persian Gulf as a marginal sea. Coastal boundary currents exchange heat and freshwater with the mosphere and the offshore waters. As heat and salinity fluxes caused by air-sea interaction and eddy activities, different temperature and salinity associated with boundary current...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

Comparison of surface salinity of Persian Gulf water using field data and FVCOM numerical model

This paper investigates and estimates the surface salinity changes of the Persian Gulf using the FVCOM numerical model. Sea level salinity (SSS) is one of the important parameters in oceanographic studies. The Persian Gulf is a semi-closed and shallow sea, which is high in the Persian Gulf due to its low rainfall, salinity and water density. One of the limitations of this region is the lack of ...

متن کامل

The effect of climate change on the precipitable water content in the north coast of the Persian Gulf

In order to detect climate change, a variety of climate indicators can be used which is often considered temperature and precipitation. In order to investigate the effect of climate change on the amount of precipitation in the north coast of the Persian Gulf, it simulated the precipitable water for 2017-2050 based on the RCP4.5 model of the Hadcm3 model. The NCEP / NCAR base-station data with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015